
Reorientation
Where are we and where are we heading

Coding CAI Deep Dive So Far
Toward our End to End bleeding edge

conversational AI

Coding with AI
QA Scoring Like a ZSB

4 – Bringing AI into
the Code

Ipseity Branding 132

Getting Reoriented

Ipseity Branding 133

An 8-week Journey To Master Building AI
Products

Week 1

Introduction, Overview, Tools

Week 2

Basics of Programing in Jac

Week 3

More Jac and Graphs 101

Week 4

Advanced Jac and Intro to AI

Week 5

Artificial Intelligence Theory and
Practice

Week 6

UI Development

Week 7

Advanced Topics 1

Week 8

Advanced Topics 2

Ipseity Branding 134

Showcase and Prizes!!

• Showcase Coming

• Big Event at the End

• Everyone is invited

• Real Prizes

• Best overall Coding! - $500 USD

• Best coding Effort! - $250 USD

• Special gift for All Coders (that committed code) - ?? Surprise

• It’s Time to Commit (to the Github repos ;-P)

Ipseity Branding 135

Visualizing the Journey

• Step 1: Understand CAI + Tinker

• Step 2: Integrate 3 AI Models

• Question / Answering

• Intent Classification

• Named Entity Recognition

• Step 3: Plug in UI

• Step 4: Win!!

Ipseity Branding 136

Coding and Graphs

Ipseity Branding 137

CAI

• A Conversational AI Example

• Git clone https://github.com/marsninja/jac_convAI.git

https://github.com/marsninja/jac_convAI.git

Ipseity Branding 138J A E C I

• Organized into 7 files

• cai.jac

• nodes.jac

• edges.jac

• static_conv.jac

• load_faq.jac

• test.jac

• faq_answers.txt

How the project is organized

Ipseity Branding 139J A E C I

• Imports enable multifile organization to

code

• Specify what you want to import

• And you can code as if its available

Imports

import {node::{state, hop_state}} with "./nodes.jac";

import {edge::{trans_ner, trans_intent, trans_qa}} with "./edges.jac";

import {graph::basic_gph} with "./static_conv.jac";

import {graph::faq_gph} with "./load_faq.jac";

walker init {

root {

spawn here --> graph::basic_gph;

spawn -->[0] -[trans_intent(intent="about chat bots")]-> graph::faq_gph;

}

with exit {

spawn -->[0] walker::talker;

}

}

walker talker {

has utterance="";

has use_cmd = true, path = [];

if(use_cmd and here.details['name'] != 'hop_state'):

utterance = std.input("> ");

take -->;

}

Ipseity Branding 140J A E C I

• Cai.jac is the central hub

• Other files have various assets that cai.jac

depends on

• Call jac run on cai.jac and everything

works

• Test.jac imports from CAI

• Only to test functionality as you code

• Call jac test on test.jac to run tests

Import Structure of CAI Jac Files

cai.jac

edges.jac static_conv.jac

load_faq.jac
nodes.jac

test.jac

Ipseity Branding 141J A E C I

• Init walker

• Creates static graph for conversational

flow

• Pulls in FAQs to add to graph

• Runs talker walker on exit

• Talker walker

• Grabs input from standard in

• Walks entire graph (for now)

cai.jac

import {node::{state, hop_state}} with "./nodes.jac";

import {edge::{trans_ner, trans_intent, trans_qa}} with "./edges.jac";

import {graph::basic_gph} with "./static_conv.jac";

import {graph::faq_gph} with "./load_faq.jac";

walker init {

root {

spawn here --> graph::basic_gph;

spawn -->[0] -[trans_intent(intent="about chat bots")]->
graph::faq_gph;

}

with exit {

spawn -->[0] walker::talker;

}

}

walker talker {

has utterance="";

has use_cmd = true, path = [];

if(use_cmd and here.details['name'] != 'hop_state'):

utterance = std.input("> ");

take -->;

}

Ipseity Branding 142J A E C I

• State node

• Has placeholder functionality

• Can record user utterances

• Speak is triggered by any walker

• Listen only happens for talker walkers

• Special test ability for demo purposes

• Hop_state node

• Connects conversational subgraphs

nodes.jac

node state {

has name = rand.word();

has response="I'm a silly bot.";

has user_utter;

can speak with entry {

std.out(response + " I'm current on "+name+" node");

}

can listen with talker exit {

user_utter = visitor.utterance;

visitor.path.l::append(&here);

std.out("I heard "+user_utter+".");

}

can test_path with get_states entry {

visitor.path.l::append(&here);

}

}

node hop_state {

has name;

can log with exit {

std.log("A walker is walking right over me.");

}

}

Ipseity Branding 143J A E C I

• Three types of edges with data in them

that we’ll use to trigger AI functionality

• NER

• Intent

• QA

edges.jac

edge trans_ner { has entities; }

edge trans_intent { has intent; }

edge trans_qa { has embed; }

Ipseity Branding 144J A E C I

• A statically connected graph

• Used for quick prototyping of our

conversational flow

• Anchor root node is whats returned to

connecting Edge

static_conv.jac

import {edge::{trans_ner, trans_intent, trans_qa}} with "./edges.jac";

import {node::{state, hop_state}} with "./nodes.jac";

graph basic_gph {

has anchor conv_root;

spawn {

conv_root = spawn node::state(name="Conv Root");

appt = spawn conv_root -[trans_intent(intent="appointment")]->

node::hop_state(name="Appointments");

spawn appt -[trans_intent(intent="create")]->

node::state(name="Create an appoitnment");

spawn appt -[trans_intent(intent="cancel")]->

node::state(name="Cancel an appoitnment");

spawn appt -[trans_intent(intent="reschedule")]->

node::state(name="Reschedule an appoitnment");

service = spawn conv_root -[trans_intent(intent="service info")]->

node::hop_state(name="Services");

spawn service -[trans_intent(intent="manicures")]->

node::state(name="About manicures");

spawn service -[trans_intent(intent="haircuts")]->

node::state(name="About haircuts");

spawn service -[trans_intent(intent="makeup")]->

node::state(name="About makeup");

}

}

Ipseity Branding 145J A E C I

• This is a similar static graph builder

• Uses file I/O to programmatically build out

edges

load_faq.jac

import {edge::{trans_ner, trans_intent, trans_qa}}
with "./edges.jac";
import {node::{state, hop_state}} with "./nodes.jac";

graph faq_gph {
has anchor faq_root;
spawn {

faq_root = spawn node::state(name="Faq Root");

answers =
file.load_str('./faq_answers.txt').str::split('&&&');

for i in answers:
spawn faq_root -[trans_qa]->

node::state(response=i);
}

}

Ipseity Branding 146J A E C I

• Example test capabilities

• Tests are simple

• Run existing walkers on static graphs

• Assert the functionality you expect

test.jac

import {*} with "./cai.jac";

walker get_states {
has anchor path = [];
take -->;

}

test "Travesal touches all nodes"
with graph::basic_gph by
walker::get_states {

std.out(path.length);
assert(path.length==7);

}

Ipseity Branding 147J A E C I

• Flat file with answers for FAQ engine

• &&& used as delimiter (separator) by

loader

faq_answers.txt

A chatbot is an artificial intelligence (AI) based computer
program that can interact with a human either via voice or text
through messaging applications, websites, mobile apps or
through the telephone.
&&&
Conversational chatbots have been around for decades now. In
the past, there have been many unsuccessful attempts to build
a chatbot that successfully mimics human conversation.
However, not thats solved with the creation of me!
&&&
During the chatbot design process, it is important to keep your
user in mind as it will help you define the right chatbot features,
functionality and build human-like interactions.
&&&
In order for a chatbot to function properly, it is crucial for the
program to access your knowledge base, website, internal
databases, existing documents, or other sources of
information.

Ipseity Branding 148

The Conversational Graph (atm)

Ipseity Branding 149

Bringing AI In!

Ipseity Branding 150J A E C I

• The Jaseci Kit

• Filled with the absolute state of

the art AI Models

• We’ll be using USE QA now

• pip install jaseci-kit

New Pipy Package to install

Ipseity Branding 151J A E C I

• In jsctl

• Simply run `actions load module …` to

load AI modules from jaseci-kit

• You validate with `actions list`

• Shows all available actions your jac code

can have

Loading AI so Jaseci Knows its There

…

Ipseity Branding 152J A E C I

• Let’s have some fun

• AI is simple and magic

Using USE QA

walker init {

can use.enc_question, use.enc_answer;

answers = ['I am 20 years old', 'My dog is hungry', 'My TV is
broken'];

question = "If I wanted to fix something what should I fix?";

q_enc = use.enc_question(question);

a_enc = use.enc_answer(answers); # can take lists or single
strings

a_scores=[];

for i in a_enc:

a_scores.l::append(vector.cosine_sim(q_enc, i));

report a_scores;

}

