
Reorientation
Where are we and where are we heading

Coding CAI Deep Dive So Far
Toward our End to End bleeding edge 

conversational AI 

Coding with AI
QA Scoring Like a ZSB

4 – Bringing AI into 
the Code
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Getting Reoriented
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An 8-week Journey To Master Building AI 
Products

Week 1

Introduction, Overview, Tools

Week 2

Basics of Programing in Jac

Week 3

More Jac and Graphs 101

Week 4

Advanced Jac and Intro to AI 

Week 5

Artificial Intelligence Theory and 
Practice

Week 6

UI Development

Week 7

Advanced Topics 1

Week 8

Advanced Topics 2
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Showcase and Prizes!!

• Showcase Coming

• Big Event at the End

• Everyone is invited

• Real Prizes

• Best overall Coding! - $500 USD

• Best coding Effort! - $250 USD

• Special gift for All Coders (that committed code) - ?? Surprise

• It’s Time to Commit (to the Github repos ;-P)
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Visualizing the Journey

• Step 1: Understand CAI + Tinker

• Step 2: Integrate 3 AI Models

• Question / Answering

• Intent Classification

• Named Entity Recognition

• Step 3: Plug in UI

• Step 4: Win!!
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Coding and Graphs
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CAI

• A Conversational AI Example

• Git clone https://github.com/marsninja/jac_convAI.git

https://github.com/marsninja/jac_convAI.git
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• Organized into 7 files

• cai.jac

• nodes.jac

• edges.jac

• static_conv.jac

• load_faq.jac

• test.jac

• faq_answers.txt

How the project is organized
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• Imports enable multifile organization to 

code

• Specify what you want to import

• And you can code as if its available

Imports

import {node::{state, hop_state}} with "./nodes.jac";

import {edge::{trans_ner, trans_intent, trans_qa}} with "./edges.jac";

import {graph::basic_gph} with "./static_conv.jac";

import {graph::faq_gph} with "./load_faq.jac";

walker init {

root {

spawn here --> graph::basic_gph;

spawn -->[0] -[trans_intent(intent="about chat bots")]-> graph::faq_gph;

}

with exit {

spawn -->[0] walker::talker;

}

}

walker talker {

has utterance="";

has use_cmd = true, path = [];

if(use_cmd and here.details['name'] != 'hop_state'):

utterance = std.input("> ");

take -->;

}
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• Cai.jac is the central hub

• Other files have various assets that cai.jac

depends on

• Call jac run on cai.jac and everything 

works

• Test.jac imports from CAI

• Only to test functionality as you code

• Call jac test on test.jac to run tests

Import Structure of CAI Jac Files

cai.jac

edges.jac static_conv.jac

load_faq.jac
nodes.jac

test.jac
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• Init walker

• Creates static graph for conversational 

flow

• Pulls in FAQs to add to graph

• Runs talker walker on exit

• Talker walker

• Grabs input from standard in

• Walks entire graph (for now)

cai.jac

import {node::{state, hop_state}} with "./nodes.jac";

import {edge::{trans_ner, trans_intent, trans_qa}} with "./edges.jac";

import {graph::basic_gph} with "./static_conv.jac";

import {graph::faq_gph} with "./load_faq.jac";

walker init {

root {

spawn here --> graph::basic_gph;

spawn -->[0] -[trans_intent(intent="about chat bots")]-> 
graph::faq_gph;

}

with exit {

spawn -->[0] walker::talker;

}

}

walker talker {

has utterance="";

has use_cmd = true, path = [];

if(use_cmd and here.details['name'] != 'hop_state'):

utterance = std.input("> ");

take -->;

}
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• State node

• Has placeholder functionality

• Can record user utterances

• Speak is triggered by any walker

• Listen only happens for talker walkers

• Special test ability for demo purposes

• Hop_state node 

• Connects conversational subgraphs

nodes.jac

node state {

has name = rand.word();

has response="I'm a silly bot.";

has user_utter;

can speak with entry {

std.out(response + " I'm current on "+name+" node");

}

can listen with talker exit {

user_utter = visitor.utterance;

visitor.path.l::append(&here);

std.out("I heard "+user_utter+".");

}

can test_path with get_states entry {

visitor.path.l::append(&here);

}

}

node hop_state {

has name;

can log with exit {

std.log("A walker is walking right over me.");

}

}
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• Three types of edges with data in them 

that we’ll use to trigger AI functionality

• NER

• Intent

• QA

edges.jac

edge trans_ner { has entities; }

edge trans_intent { has intent; }

edge trans_qa { has embed; }
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• A statically connected graph

• Used for quick prototyping of our 

conversational flow

• Anchor root node is whats returned to 

connecting Edge

static_conv.jac

import {edge::{trans_ner, trans_intent, trans_qa}} with "./edges.jac";

import {node::{state, hop_state}} with "./nodes.jac";

graph basic_gph {

has anchor conv_root;

spawn {

conv_root = spawn node::state(name="Conv Root");

appt = spawn conv_root -[trans_intent(intent="appointment")]->

node::hop_state(name="Appointments");

spawn appt -[trans_intent(intent="create")]->

node::state(name="Create an appoitnment");

spawn appt -[trans_intent(intent="cancel")]->

node::state(name="Cancel an appoitnment");

spawn appt -[trans_intent(intent="reschedule")]->

node::state(name="Reschedule an appoitnment");

service = spawn conv_root -[trans_intent(intent="service info")]->

node::hop_state(name="Services");

spawn service -[trans_intent(intent="manicures")]->

node::state(name="About manicures");

spawn service -[trans_intent(intent="haircuts")]->

node::state(name="About haircuts");

spawn service -[trans_intent(intent="makeup")]->

node::state(name="About makeup");

}

}
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• This is a similar static graph builder

• Uses file I/O to programmatically build out 

edges

load_faq.jac

import {edge::{trans_ner, trans_intent, trans_qa}} 
with "./edges.jac";
import {node::{state, hop_state}} with "./nodes.jac";

graph faq_gph {
has anchor faq_root;
spawn {

faq_root = spawn node::state(name="Faq Root");

answers = 
file.load_str('./faq_answers.txt').str::split('&&&');

for i in answers:
spawn faq_root -[trans_qa]-> 

node::state(response=i);
}

}
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• Example test capabilities

• Tests are simple

• Run existing walkers on static graphs

• Assert the functionality you expect

test.jac

import {*} with "./cai.jac";

walker get_states {
has anchor path = [];
take -->;

}

test "Travesal touches all nodes"
with graph::basic_gph by 
walker::get_states {

std.out(path.length);
assert(path.length==7);

}
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• Flat file with answers for FAQ engine

• &&& used as delimiter (separator) by 

loader

faq_answers.txt

A chatbot is an artificial intelligence (AI) based computer 
program that can interact with a human either via voice or text 
through messaging applications, websites, mobile apps or 
through the telephone.
&&&
Conversational chatbots have been around for decades now. In 
the past, there have been many unsuccessful attempts to build 
a chatbot that successfully mimics human conversation. 
However, not thats solved with the creation of me!
&&&
During the chatbot design process, it is important to keep your 
user in mind as it will help you define the right chatbot features, 
functionality and build human-like interactions.
&&&
In order for a chatbot to function properly, it is crucial for the 
program to access your knowledge base, website, internal 
databases, existing documents, or other sources of 
information.
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The Conversational Graph (atm)
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Bringing AI In!
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• The Jaseci Kit 

• Filled with the absolute state of 

the art AI Models

• We’ll be using USE QA now

• pip install jaseci-kit

New Pipy Package to install
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• In jsctl

• Simply run `actions load module …` to 

load AI modules from jaseci-kit

• You validate with `actions list`

• Shows all available actions your jac code 

can have

Loading AI so Jaseci Knows its There

…
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• Let’s have some fun

• AI is simple and magic

Using USE QA

walker init {

can use.enc_question, use.enc_answer;

answers = ['I am 20 years old', 'My dog is hungry', 'My TV is 
broken'];

question = "If I wanted to fix something what should I fix?";

q_enc = use.enc_question(question);

a_enc = use.enc_answer(answers); # can take lists or single 
strings

a_scores=[];

for i in a_enc:

a_scores.l::append(vector.cosine_sim(q_enc, i));

report a_scores;

}


