2 — Graphs and
Coding

Intro To Code

Let’s write our first programs

The Graph Data Structure

Incredibly Rich and Powerful

Build and Tinker

Explore

Graphs

"The important graphs are the ones where some
things are not connected to some other things.
When the unenlightened ones [make
connections between everything] until their
graph is fully connected and also totally
useless." — Eliezer Yudkowsky

Why Graphs?

Visitor clicks the
bots button

rse—— (O K #3-“Returns Policy

° Decision (Quick s
Replies)
Welcome Rakebots.com Askaquestion Sendachat
Message messoge
 Success #2-"Returns Time Limit
L]
L]
Show whats's trending Book the Check Dilevery Cancel my order Others BesedonConact .
product status

Send achat
Display all the What are you i . pei
trending products looking for?

Ask aquestion

Log in

+/ Success

L]
Back to main Book this

product Enter Order .
number

Ask aquestion

L o
Display delivery Are yot:‘::lrc to Sendachat
. e Status
Login/Sign

it
L] o
up

Send achat Send achat

message message

L
-IIH Yes
Enter Sign up Text s . &
Login Id

Chat with bot
® Action Performed ended
by the bot

P t ® Call to action
G:}i:cn:::y Feedback

Why Graphs?

CommentAboutTopic TopicProposal movie/music

‘ yes lets
interes yes talk
of yes

UserName ﬂ ArticleAboutTopic «—— Default

lets

yes
Start > Userlnfo intents related to

one-round conversation
and retrieval model

Movie/Music

FoodDescription FoodRecipe

Food

name of user talk food
\ Ll ﬂ &0 q A ame&s /es

FoodIngredients

Graph Theory Preview

= A Graphs is simply a non-sequential data structure type that
consist of nodes (aka vertices) and edges.
= A simple graph consists of:

= A nonempty set of vertices called V
=« A set of edges (unordered pairs of distinct elements of V) called E

= The notation for describing a graph would be:
s G= (V,E)

Simple Graph

San Francisco

Los Angeles

 This simple graph represents a network.
* The network is made up of computers and telephone links between computers

Detroit

/e\vl\\lew York

Denver

Chicago‘\f

Washington

)

Multigraph

Detroit

New York

San Francisco

—__—"TChicago

Denver Washington

Los Angeles

« A multigraph can have multiple edges (two or more edges connecting the same
pair of vertices).

« There can be multiple telephone lines between two computers in the network.

) N

Pseudograph

Detroit

New York

San Franciscag

Denver

Washington

Los Angeleg

« A Pseudograph can have multiple edges and loops (an edge connecting a vertex
to itself).

* There can be telephone lines in the network from a computer to itself.

) N

Types of Undirected Graphs

Multigraphs -

Directed Graph

Detroit

—~—

Denver Washington

Chicago

ew York

San Francisco

S —

Los Angeles

* The edges are ordered pairs of (not necessarily distinct) vertices.

- Some telephone lines in the network may operate in only one direction. Those that
operate in two directions are represented by pairs of edges in opposite directions.

) N

Directed Multigraph

Detroit

New York

Chicago

San Francisco

Washington

Los Angeles

* A directed multigraph is a directed graph with multiple edges between the same two distinct
vertices. Some telephone lines in the network may operate in only one direction. Those that operate
in two directions are represented by pairs of edges in opposite directions.

* There may be several one-way lines in the same direction from one computer to another in the

network.
)

Types of Undirected Graphs

Directed Graphs

Modeling Problems with Graphs

© The McGraw-Hill Companies, Inc. all rights reserved.

- Graphs can be used to model
structures, sequences, and other acecion
relationships.

- Example: ecological niche overlay
graph Opossum

« Species are represented by vertices

Squirrel

Crow

* |f two species compete for food,

they are connected by a vertex Shrew

Woodpecker

] -

Is Facebook a graph?

© The McGraw-Hill Companies, Inc. all rights reserved.

Eduardo
Jan Paula Todd Kamlesh
Amy I
Kamini Ching
Lila
: Steve
Liz
Joel :
Gail Bl

®
Kari Shaquira

Coding Intro

SKATING UPHILL LIKE THIS IS
AMAZING. YERRS OF GLIDING P W o y
DOWNHILL AND PUSHING _ 7
L E E UPHILL, AND NOW SUDDENLY

IT5 GLIDING BOTH WAYS, .

) / ! N

N < . YEAH... BUT IT \
‘ : DEPENPS HOW YOU
WANT TO SPEND YOUR

Wm#ﬁn‘fiﬁw LIFE. SEE, MY
PHILOSOPHY 15—
T LIKE GOING FROM To\\ ABETTER PROGRAMMER. / N -

PYTHON. YOU DON'TREALIZE HE BORING
Hol MUCH TIME YoU WERE [TAYEE
SPENDING ONTHE BORING)\PARTS BUILD CHARACTER.
L PARTS UNTIL YOU DON'T HAVE
To 00 THEM ANYMORE.
= \ ¥ N

i

A Primer on Jac

Developed in early 2020s Interpreted

Named after Jaseci Code Dynamically Typed

All types based on JSON

Design inspired by Javascript and Python

Can be used standalone or as glue Concise

Where does 1t run?

same

Jac Program

J

Jac Language

g) JASECI

P -F' O PyTorch

python Tensor etc

Your Machine

Jac Program

g) Jac Language
0 JASECI
@ [t
& redis PostgreSQL FastAP!
() kubernetes
Cloud

Basic Coding

- Code Block walker init

34 - 30; # This is a comment
"Hello";

* Region of Execution
3.45;

« Defined with {} for multiple statements

if(z==3.45 or y=="Bye"){ # if statement

* or single statement blocks :; (for XfXjSWOrld". 4 the + concatenates
succinctness)) y=y ’ ¢
 First assignment to a variable creates it std.out (x);
: for i=0 to i<3 by i+=1: # single line block
* No types needed (bUt types exist std.out(x-1i,"'-", y); # prints to screen

irnernaﬂy) report [x, y+'s']; # adds data to payload
* Python and JS style comments
o # 1 F*

Basic Coding

Assignment uses = and comparison uses ==
For numbers +, -, *, /, %, are expected
» Special use of + for strings is concatenation
* Also +=, -=, *=, /=, etC
* a += 1 sameasa = a + 1

Logical operators can be symbols or words (&&,
and, ||, or, !, not)

std.out(“string”); represents printing to screen

report “string”; represents adding to return
payload

walker init

Xx = 34 - 30; # This is a comment
y = "Hello";
z = 3.45;

if(z==3.45 or y=="Bye"){ # if statement
X=X-1;
y=y+" World"; # the + concatenates

}

std.out(x);
for i=0 to i<3 by i+=1: # single line block

std.out(x-1i,"'-", y); # prints to screen
report [x, y+'s']; # adds data to payload

Basic Coding Output

walker init {
= 34 - 30; # This is a comment
= "Hello";
= 3.45;

- Hello World

- Hello World

- Hello World

if(z==3.45 or y=="Bye"){ # if statement
X=X-1;

"success": true,
y=y+" World"; # the + concatenates

"report": [
[
3,

}

std.out(x);

for i=0 to i<3 by i+=1: # single line block
std.out(x-1i,'-"', y); # prints to screen

report [x, y+'s']; # adds data to payload

"Hello Worlds"

Jac Types

* Types in Jac are 1 tro 1 mapped to JSON types

String String “Hello”, ‘world’,
“Joe’s World”

Int, float Number 4, 3.14

Dict, node, edge Json object {*five”: 5}, node,
edge

List Array [4, 3.14, 5]

Bool Bool True

Null Null null

Jac Types Output

walker init { "ouccess": true
. 14

"report": [
{

"int": 5,
"float": 5.0,
"bool": true,
"string": "5",
"list": [

S5,

5.0,

true,

"5",

5

summary = {'int': a, 'float': b, 'bool': c,
"string': d, 'list': e, 'dict': f};]
ndictm: |

A

report summary; num": 5

Naming Variables

- Names are case sensitive and cannot start with a number. They can
contain letters, numbers, and underscores.

* bob Bob bob 2 bob Dbob 2 BoB

* There are some reserved words:

°* 1mport, node, i1gnore, take, entry, activity, exit, spawn,
with, edge, walker, and, or, 1f, elif, else, for, with,
by, while, continue, break, disengage, report, anchor,
has, can, true, false, context, info, details, try,
strict, length, test, type, str, int, float, list, dict,
bool, digraph, subgraph, test, by, in, to, skip, assert,
etc

Note: Jac Piggy Backs on Python

- Jac takes a piggy-back approach

* Interpreter translate to python execution
* When in doubt, python rules apply
* My notice some odd error outputs from the python layer

Working with Lists and Strings

» Lists

11 = [“abc”, 34, 4.34, 23]
report 1i[0];

1i = 1i[1:3]; report 1i[-11];
li.l::sort; report 1i[-1];

More on lists:
https://towardsdatascience.com/python-
basics-6-lists-and-list-manipulation-
a56be62b1f95

 Strings

e st = “Hello” + " World’

°* report

°* report

st[3:].

st.s::split;

s::upper.s::split(‘r’);

Working with Dictionaries

* Dictionary

e dt = {

o ‘one’ : 1,
‘two’ 1 2,
‘three’ : 3,
‘four’: 4

° 1

°* report
°* report
°* report
°* report

°* report

dt [‘one’ 1=6;
dt.d: :keys;
dt.d::values;
dt.d::items;

dt;

Control Flow

* For |OOpS walker init

fav_nums=[];

* Loops that specify start, and range to increment for i=0 to 1<10 by i+i:

fav_nums.1l::append(i*2);

¢ Whlle IOOpS report fav_nums;
* Loops that test a condition each iteration fancy_str = "";
for i in fav_nums {
° |f Statement fancy_str = fancy_str + "two * " + i.str +
"= "o (i*2).str + " # Y
» Decides whether to execute a block based on) ,
condition report fancy_str;
count_down = fav_nums[-1];
while (count_down > 0) {
® Break count_down -= 1;
. . . if (count_down == 14):
* Quit the loop immediately continue;
. std.out("I'm at countdown "+count_down.str);
« Continue if (count_down == 10):

break;

- Start next iteration immediately

Control Flow

- Casting with .type notation
* (9).str="5"
* (“47).int=4

“47.int* 3 =12
‘4" * 3 = Crash!

walker init
fav_nums=[];

for i=0 to i<10 by i+=1:
fav_nums.1l::append(i*2);
report fav_nums;

fancy_str = 5
for i in fav_nums {
fancy_str = fancy_str + "two * " + i.str +
"= " (I*2).str + " #

}

report fancy_str;
count_down = fav_nums[-1];
while (count_down > 0) {

count_down -= 1;
if (count_down == 14):
continue;
std.out("I'm at countdown "+count_down.str);
if (count_down == 10):
break;

Control Flow Output

walker init { at countdown 17

fav_nums=[];

at countdown 16

at countdown 15
at countdown 13

for i=0 to i<10 by i+=1:
fav_nums.l::append(i*2);
report fav_nums;

at countdown 12

~H H H H H e
3 85 3 3 3 358 3

at countdown 11

at countdown 10

nn

fancy_str = 5
for i in fav_nums {
fancy_str = fancy_str + "two * " + i.str +
"= "4 (i*2).str + " # "

"success": true,
"report": [

[

}

report fancy_str;
count_down = fav_nums[-1];
while (count_down > 9) {
count_down -= 1;
if (count_down == 14):
continue;
std.out("I'm at countdown "+count_down.str);
if (count_down == 10):
break;

1,

"two * 0 =0 # two * 2 =4 # two * 4 = 8 # two * 6 = 12 # two * 8
20 # two * 12 = 24 # two * 14 = 28 # two * 16 = 32 # two * 18 = 3

Nodes and Edges: Where Memory Starts

walker init

¥

Memory

Nodes and Edges: Basic

Memory

node plain

walker init @

nodel = spawn node::plain;
node2 = spawn node::plain;

nodel <--> node2; @ e0

here --> nodel;
node2 <-- here;

Nodes and Edges: Named Edges

node person
edge family;
edge friend;

walker init
nodel = spawn node: :person;
node2 = spawn node::person;
nodel <-[family]-> node2;

here -[friend]-> nodel;
node2 <-[friend]- here;

named and unnamed edges and nodes
be mixed

node2 --> here;

Memory

e2:friend

n0:root

e3:friend el

Nodes and Edges: Spawn Connects

Memory

node person
edge friend;
edge family;

walker init
nodel = spawn here -[friend]->

node: :person;

node2 spawn nodel <-[family]->
node: :person;

here -[friend]-> node2;

Node / Edge Contexts

node person {
has name;
has age;
has birthday, profession;

}

edge friend: has meeting_place;
edge family: has kind;

personl = spawn here -[friend]-> node: :person;
person2 = spawn here -[family]-> node::person;
personl.name = "Josh"; personl.age = 32;
person2.name = "Jane"; person2.age = 30;

walker init {

el = -[friend]->.edge[0];
el.meeting_place = "college";
e2 = -[family]->.edge[0];
e2.kind = "sister";

std.out("Context for our people nodes:");
for i in -->: std.out(i.context);
or, for i in -->.node: std.out(i.context);

std.out("\nContext for our edges to those people:");

for i in -->.edge: std.out(i.context);

Context for our people nodes:
{"name": "Josh", "age": 32, "birthday"
"profession": null}

"name": "Jane", "age": 30, "birthday"
"profession": null}

Context for our edges to those people:

{"meeting place": "college"}
{"kind": "sister"}

{

"success": true,
"report": []

More Concise Contexts

node person {
has name;

has age; edge friend: has meeting place;
has birthday, profession;

} edge family: has kind;

node person: has name, age, birthday, profession;

edge friend: has meeting_place;
edge family: has kind; walker init {

walker init { personl = spawn here -[friend(meeting place =
personl = spawn here -[friend]-> node: :person; "college")] ->
person2 = spawn here -[family]-> node::person;
personl.name = “Josh"; personl.age = 32; node: :per‘son(name = "Josh", age 32);
person2.name = "Jane"; person2.age = 30;
el = -[friend]->.edge[0];
el.meeting place = "college"; node: :person(name = "Jane", age 30);
e2 = -[family]->.edge[0];
e2.kind = "sister";

person2 = spawn here -[family(kind = "sister")] ->

std.out("Context for our people nodes and edges:");
std.out("Context for our people nodes:");

for i in -->: std.out(i.context); for i in -->:
or, for i in -->.node: std.out(i.context);
std.out("\nContext for our edges to those people:");
for i in -->.edge: std.out(i.context);

std.out(i.context, '\n', i.edge[@].context);

Walking Graphs

node person: has name;

walker get _names
std.out(here.name
take -->;

}

walker build_example
nodel = spawn here --> node::person(name="Joe");
node2 = spawn nodel --> node::person(name="Susan");
spawn node2 --> node::person(name="Matt");

}

walker init
root {
spawn here walker::build_example;
take -->;

}

person {
spawn here walker::get_names;
disengage;

Assignment 2 Deep Dive

Graph Example of Assignment 1

e6
e3:transition e(:transition e7:transition e2:transition / e8:transition \el:fransition e5:transition el0:transition ed:transition e9:transition

Deep Dive on Thursday But Now

» Enter every example In this slide deck into your VSCode and
* Run each one

- Make a few changes to see what happens

* Do it by hand

» “Wax on / Wax off”

