
Intro To Code
Let’s write our first programs

The Graph Data Structure
Incredibly Rich and Powerful

Build and Tinker
Explore

2 – Graphs and
Coding

Ipseity Branding 50

"The important graphs are the ones where some
things are not connected to some other things.
When the unenlightened ones [make
connections between everything] until their
graph is fully connected and also totally
useless." – Eliezer Yudkowsky

Graphs

Ipseity Branding 51J A E C I

Why Graphs?

Ipseity Branding 52J A E C I

Why Graphs?

Ipseity Branding 53

Graph Theory Preview

◼ A Graphs is simply a non-sequential data structure type that

consist of nodes (aka vertices) and edges.

◼ A simple graph consists of:

◼ A nonempty set of vertices called V

◼ A set of edges (unordered pairs of distinct elements of V) called E

◼ The notation for describing a graph would be:

◼ G = (V,E)

Ipseity Branding 54

Simple Graph

• This simple graph represents a network.

• The network is made up of computers and telephone links between computers

San Francisco

Denver

Los Angeles

New York

Chicago
Washington

Detroit

Ipseity Branding 55

Multigraph

• A multigraph can have multiple edges (two or more edges connecting the same
pair of vertices).

• There can be multiple telephone lines between two computers in the network.

San Francisco

Denver

Los Angeles

New York

Chicago
Washington

Detroit

Ipseity Branding 56

Pseudograph

• A Pseudograph can have multiple edges and loops (an edge connecting a vertex
to itself).

• There can be telephone lines in the network from a computer to itself.

San Francisco
Denver

Los Angeles

New YorkChicago

Washington

Detroit

Ipseity Branding 57

Types of Undirected Graphs

Pseudographs

Multigraphs

Simple Graphs

Ipseity Branding 58

Directed Graph

• The edges are ordered pairs of (not necessarily distinct) vertices.

• Some telephone lines in the network may operate in only one direction. Those that
operate in two directions are represented by pairs of edges in opposite directions.

San Francisco

Denver

Los Angeles

New YorkChicago

Washington

Detroit

Ipseity Branding 59

Directed Multigraph

• A directed multigraph is a directed graph with multiple edges between the same two distinct
vertices. Some telephone lines in the network may operate in only one direction. Those that operate
in two directions are represented by pairs of edges in opposite directions.

• There may be several one-way lines in the same direction from one computer to another in the
network.

San Francisco

Denver

Los Angeles

New York
Chicago

Washington

Detroit

Ipseity Branding 60

Types of Undirected Graphs

Directed
Multigraphs

Directed Graphs

Ipseity Branding 61

Modeling Problems with Graphs

• Graphs can be used to model

structures, sequences, and other

relationships.

• Example: ecological niche overlay

graph

• Species are represented by vertices

• If two species compete for food,

they are connected by a vertex

Ipseity Branding 62

Is Facebook a graph?

Ipseity Branding 63

Coding Intro

Ipseity Branding 64J A E C I

• Developed in early 2020s

• Named after Jaseci Code

• Design inspired by Javascript and Python

• Can be used standalone or as glue

A Primer on Jac

• Interpreted

• Dynamically Typed

• All types based on JSON

• Concise

Ipseity Branding 65J A E C I

Where does it run?

Your Machine

etc

Jac Language

Jac Program

Cloud

etc

Jac Language

Jac Program

same

Ipseity Branding 66J A E C I

• Code Block

• Region of Execution

• Defined with { } for multiple statements

• or single statement blocks :; (for
succinctness)

• First assignment to a variable creates it

• No types needed (but types exist
internally)

• Python and JS style comments

• #, //, /* */

Basic Coding

walker init {
x = 34 - 30; # This is a comment
y = "Hello";
z = 3.45;

if(z==3.45 or y=="Bye"){ # if statement
x=x-1;
y=y+" World"; # the + concatenates

}

std.out(x);
for i=0 to i<3 by i+=1: # single line block

std.out(x-i,'-', y); # prints to screen
report [x, y+'s']; # adds data to payload

}

Ipseity Branding 67J A E C I

• Assignment uses = and comparison uses ==

• For numbers +, -, *, /, %, are expected

• Special use of + for strings is concatenation

• Also +=, -=, *=, /=, etc

• a += 1 same as a = a + 1

• Logical operators can be symbols or words (&&,
and, ||, or, !, not)

• std.out(“string”); represents printing to screen

• report “string”; represents adding to return
payload

Basic Coding

walker init {
x = 34 - 30; # This is a comment
y = "Hello";
z = 3.45;

if(z==3.45 or y=="Bye"){ # if statement
x=x-1;
y=y+" World"; # the + concatenates

}

std.out(x);
for i=0 to i<3 by i+=1: # single line block

std.out(x-i,'-', y); # prints to screen
report [x, y+'s']; # adds data to payload

}

Ipseity Branding 68J A E C I

Basic Coding Output

3

3 - Hello World

2 - Hello World

1 - Hello World

{

"success": true,

"report": [

[

3,

"Hello Worlds"

]

]

}

walker init {
x = 34 - 30; # This is a comment
y = "Hello";
z = 3.45;

if(z==3.45 or y=="Bye"){ # if statement
x=x-1;
y=y+" World"; # the + concatenates

}

std.out(x);
for i=0 to i<3 by i+=1: # single line block

std.out(x-i,'-', y); # prints to screen
report [x, y+'s']; # adds data to payload

}

Ipseity Branding 69J A E C I

• Types in Jac are 1 tro 1 mapped to JSON types

Jac Types

Jac Type Json Type Example

String String “Hello”, ‘world’,

“Joe’s World”

Int, float Number 4, 3.14

Dict, node, edge Json object {“five”: 5}, node,

edge

List Array [4, 3.14, 5]

Bool Bool True

Null Null null

Ipseity Branding 70J A E C I

Jac Types Output

{

"success": true,

"report": [

{

"int": 5,

"float": 5.0,

"bool": true,

"string": "5",

"list": [

5,

5.0,

true,

"5",

5

],

"dict": {

"num": 5

}

}

]

}

walker init {

a=5;

b=5.0;

c=true;

d='5';

e=[a, b, c, d, 5];

f={'num': 5};

summary = {'int': a, 'float': b, 'bool': c,

'string': d, 'list': e, 'dict': f};

report summary;

}

Ipseity Branding 71

Naming Variables

• Names are case sensitive and cannot start with a number. They can
contain letters, numbers, and underscores.

• bob Bob _bob _2_bob_ bob_2 BoB

• There are some reserved words:

• import, node, ignore, take, entry, activity, exit, spawn,
with, edge, walker, and, or, if, elif, else, for, with,
by, while, continue, break, disengage, report, anchor,
has, can, true, false, context, info, details, try,
strict, length, test, type, str, int, float, list, dict,
bool, digraph, subgraph, test, by, in, to, skip, assert,
etc

Ipseity Branding 72

Note: Jac Piggy Backs on Python

• Jac takes a piggy-back approach

• Interpreter translate to python execution

• When in doubt, python rules apply

• My notice some odd error outputs from the python layer

Ipseity Branding 73J A E C I

• Lists

• li = [“abc”, 34, 4.34, 23]

• report li[0];

• li = li[1:3]; report li[-1];

• li.l::sort; report li[-1];

• More on lists:

https://towardsdatascience.com/python-

basics-6-lists-and-list-manipulation-

a56be62b1f95

Working with Lists and Strings

• Strings

• st = “Hello” + ‘ World’

• report st.s::split;

• report

st[3:].s::upper.s::split(‘r’);

Ipseity Branding 74J A E C I

• Dictionary

• dt = {

• ‘one’: 1,

• ‘two’: 2,

• ‘three’: 3,

• ‘four’: 4

• };

Working with Dictionaries

• report dt[‘one’]=6;

• report dt.d::keys;

• report dt.d::values;

• report dt.d::items;

• report dt;

Ipseity Branding 75J A E C I

• For loops

• Loops that specify start, and range to increment

• While loops

• Loops that test a condition each iteration

• If Statement

• Decides whether to execute a block based on
condition

• Break

• Quit the loop immediately

• Continue

• Start next iteration immediately

Control Flow

walker init {

fav_nums=[];

for i=0 to i<10 by i+=1:

fav_nums.l::append(i*2);

report fav_nums;

fancy_str = "";

for i in fav_nums {

fancy_str = fancy_str + "two * " + i.str +

" = " + (i*2).str + " # ";

}

report fancy_str;

count_down = fav_nums[-1];

while (count_down > 0) {

count_down -= 1;

if (count_down == 14):

continue;

std.out("I'm at countdown "+count_down.str);

if (count_down == 10):

break;

}

}

Ipseity Branding 76J A E C I

• Casting with .type notation

• (5).str = “5”

• (“4”).int = 4

• “4”.int * 3 = 12

• “4” * 3 = Crash!

Control Flow

walker init {

fav_nums=[];

for i=0 to i<10 by i+=1:

fav_nums.l::append(i*2);

report fav_nums;

fancy_str = "";

for i in fav_nums {

fancy_str = fancy_str + "two * " + i.str +

" = " + (i*2).str + " # ";

}

report fancy_str;

count_down = fav_nums[-1];

while (count_down > 0) {

count_down -= 1;

if (count_down == 14):

continue;

std.out("I'm at countdown "+count_down.str);

if (count_down == 10):

break;

}

}

Ipseity Branding 77J A E C I

Control Flow Output

I'm at countdown 17

I'm at countdown 16

I'm at countdown 15

I'm at countdown 13

I'm at countdown 12

I'm at countdown 11

I'm at countdown 10

{

"success": true,

"report": [

[

0,

2,

4,

6,

8,

10,

12,

14,

16,

18

],

"two * 0 = 0 # two * 2 = 4 # two * 4 = 8 # two * 6 = 12 # two * 8 = 16 # two *
10 = 20 # two * 12 = 24 # two * 14 = 28 # two * 16 = 32 # two * 18 = 36 # "

]

}

walker init {

fav_nums=[];

for i=0 to i<10 by i+=1:

fav_nums.l::append(i*2);

report fav_nums;

fancy_str = "";

for i in fav_nums {

fancy_str = fancy_str + "two * " + i.str +

" = " + (i*2).str + " # ";

}

report fancy_str;

count_down = fav_nums[-1];

while (count_down > 0) {

count_down -= 1;

if (count_down == 14):

continue;

std.out("I'm at countdown "+count_down.str);

if (count_down == 10):

break;

}

}

Ipseity Branding 78

Graphs in Jac

Ipseity Branding 79J A E C I

Nodes and Edges: Where Memory Starts

walker init {

} Memory

Ipseity Branding 80J A E C I

Nodes and Edges: Basic

node plain;

walker init {

node1 = spawn node::plain;

node2 = spawn node::plain;

node1 <--> node2;

here --> node1;

node2 <-- here;

}

Memory

Ipseity Branding 81J A E C I

Nodes and Edges: Named Edges

node person;
edge family;
edge friend;

walker init {
node1 = spawn node::person;
node2 = spawn node::person;
node1 <-[family]-> node2;
here -[friend]-> node1;
node2 <-[friend]- here;

named and unnamed edges and nodes
can be mixed

node2 --> here;
}

Memory

Ipseity Branding 82J A E C I

Nodes and Edges: Spawn Connects

node person;

edge friend;

edge family;

walker init {

node1 = spawn here -[friend]->

node::person;

node2 = spawn node1 <-[family]->

node::person;

here -[friend]-> node2;

}

Memory

Ipseity Branding 83J A E C I

Node / Edge Contexts

Context for our people nodes:

{"name": "Josh", "age": 32, "birthday": null,
"profession": null}

{"name": "Jane", "age": 30, "birthday": null,
"profession": null}

Context for our edges to those people:

{"meeting_place": "college"}

{"kind": "sister"}

{

"success": true,

"report": []

}

node person {

has name;

has age;

has birthday, profession;

}

edge friend: has meeting_place;

edge family: has kind;

walker init {

person1 = spawn here -[friend]-> node::person;

person2 = spawn here -[family]-> node::person;

person1.name = "Josh"; person1.age = 32;

person2.name = "Jane"; person2.age = 30;

e1 = -[friend]->.edge[0];

e1.meeting_place = "college";

e2 = -[family]->.edge[0];

e2.kind = "sister";

std.out("Context for our people nodes:");

for i in -->: std.out(i.context);

or, for i in -->.node: std.out(i.context);

std.out("\nContext for our edges to those people:");

for i in -->.edge: std.out(i.context);

}

Ipseity Branding 84J A E C I

More Concise Contexts

node person: has name, age, birthday, profession;

edge friend: has meeting_place;

edge family: has kind;

walker init {

person1 = spawn here -[friend(meeting_place =
"college")] ->

node::person(name = "Josh", age = 32);

person2 = spawn here -[family(kind = "sister")] ->

node::person(name = "Jane", age = 30);

std.out("Context for our people nodes and edges:");

for i in -->:

std.out(i.context, '\n', i.edge[0].context);

}

node person {

has name;

has age;

has birthday, profession;

}

edge friend: has meeting_place;

edge family: has kind;

walker init {

person1 = spawn here -[friend]-> node::person;

person2 = spawn here -[family]-> node::person;

person1.name = "Josh"; person1.age = 32;

person2.name = "Jane"; person2.age = 30;

e1 = -[friend]->.edge[0];

e1.meeting_place = "college";

e2 = -[family]->.edge[0];

e2.kind = "sister";

std.out("Context for our people nodes:");

for i in -->: std.out(i.context);

or, for i in -->.node: std.out(i.context);

std.out("\nContext for our edges to those people:");

for i in -->.edge: std.out(i.context);

}

Ipseity Branding 85J A E C I

Walking Graphs

Joe

Susan

Matt

node person: has name;

walker get_names {

std.out(here.name)

take -->;

}

walker build_example {

node1 = spawn here --> node::person(name="Joe");

node2 = spawn node1 --> node::person(name="Susan");

spawn node2 --> node::person(name="Matt");

}

walker init {

root {

spawn here walker::build_example;

take -->;

}

person {

spawn here walker::get_names;

disengage;

}

}

Memory

Ipseity Branding 86

Assignment 2 Deep Dive

Ipseity Branding 87

Graph Example of Assignment 1

Ipseity Branding 88

Deep Dive on Thursday But Now

• Enter every example in this slide deck into your VSCode and

• Run each one

• Make a few changes to see what happens

• Do it by hand

• “Wax on / Wax off”

